Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Poultry Farm
2.2. Test Sections and Multisensor System for Direct Measurements
2.3. CFD Background
where ρ: fluid density (kg m−3); t: time (s); x, xi, xj: length components (m); ui, uj: velocity component (m s−1); p: pressure (Pa); τij: stress tensor (Pa); gi: gravitational acceleration (m s−2); Fi: external body forces in the i direction (N m−3); c: specific heat (W kg−1 K−1); T: temperature (K); K: thermal conductivity (W m−1 K−1 ); ST: thermal source term (W m−3).
2.4. Turbulence Models and Boundary Conditions (BC)
where k: turbulent kinetic energy (m2 s−2); μ: fluid viscosity (m2 s); μt: turbulent viscosity (m2 s); σk: turbulent Prandtl number for k; Gk: the generation of kinetic energy due to the variations of the components of the average velocity of the flow (kg m−1 s−2); Gb: the generation of kinetic energy by boundary push (kg m−1 s−2); ε: turbulent dissipation rate (m2 s−3); YM: contribution of the pulsatile expansion associated to the compressible turbulence (kg m−1 s−2); σε: turbulent Prandtl number for ε; C1ε: constant; C2ε: constant; C3ε= tanh[u1/u2]; u1: velocity of flow parallel to gi (gravitational vector); u2: velocity of flow perpendicular to gi. Moreover, the constant values were C1ε = 1.44, C2ε = 1.92, σk = 1.0 and σε = 1.3 [22,26].
where θmax= Largest angle in face or cell; θmin= Smallest angle in face or cell; θe= Angle for equiangular face or cell.
2.5. Statistical Validation Model
where the different variables are explained below, and in brackets the number of levels within each variable is indicated:
-
Yijk: Air velocity in the section i at boundary conditions j at height k by the sensor l and by methodology n;
-
Zi: Measurement section (2);
-
Bj: Boundary conditions (4);
-
Hk: Height of the sensor (2);
-
SNl: Sensor l (24);
-
Mn: Methodology: CFD vs. direct measurements using the multisensor system (2);
-
(Z X B)ij: Interaction between Section-Boundary (8);
-
(Z X H)ik: Interaction between Section-Height (4);
-
(Z X M)in: Interaction between Section-Methodology (4);
-
(Z X SN)il: Interaction between Section-Sensor (48);
-
(B X H)jk: Interaction between Boundary-Height (8);
-
(B X SN)jl: Interaction between Boundary-Sensor (96);
-
(B X M)jn: Interaction between Boundary-Methodology (8);
-
(H X M)lk: Interaction between Height-Methodology (4);
-
(SN X H)lk: Interaction between Sensor-Height (48);
-
(Z X B X H)ijk: Triple interaction between Section-Boundary-Height (16);
-
(Z X SN X M)iln: Triple interaction between Section-Sensor-Methodology (96);
-
(B X SN X M)jln: Triple interaction between Boundary-Sensor-Methodology (192);
-
(Z X B X H X M)ijkn: Four interaction between Section-Boundary-Height-Methodology (384);
-
εijkln: Error of the model
3. Results and Discussion
3.1. CFD vs. Direct Measurements
3.2. CFD-Air Velocity Results
3.3. Results of the Validation Model
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Charles, D.; Walker, A. Poultry Environment Problems: A Guide to Solutions, 1st ed.; Charles, D., Walker, A., Eds.; Nottingham University Press: Nottingham, UK, 2002. [Google Scholar]
- MWPS (Midwest Plan Service). Mechanical Ventilating Systems for Livestock Housing, 1st ed.; Midwest Plan Service, Iowa State University: Ames, IA, USA, 1990. [Google Scholar]
- Medio millón de pollos mueren por el fuerte calor de los últimos días. Available online: http://elpais.com/diario/2003/06/17/cvalenciana/1055877480_850215.html (accessed on 14 November 2012).
- Korea heat wave kills off 830,000 chickens (in August 2012). Available online: http://www.worldpoultry.net/Broilers/Health/2012/8/S-Korean-heat-wave-kills-off-830000-chickens-WP010736W/ (accessed on 7 May 2013).
- Bustamante, E.; Guijarro, E.; García-Diego, F.J.; Balasch, S.; Torres, A.G. Multisensor system for isotemporal measurements to assess indoor climatic conditions in poultry farms. Sensors 2012, 12, 5752–5774. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S.; Donnelly, C.A.; Jones, T.A. Chicken welfare is influenced more by housing conditions than stocking density. Nature 2004, 427, 342–344. [Google Scholar] [CrossRef] [PubMed]
- European Union (EU). Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production; EU Council Directive 2007/43/EC; European Union: Brussels, Belgium, 2007. [Google Scholar]
- Lott, B.D.; Simmons, J.D.; May, J.D. Air velocity and high temperature effects on broiler performance. Poult. Sci. 1998, 77, 391–393. [Google Scholar] [CrossRef] [PubMed]
- May, J.D.; Lott, B.D.; Simmons, J.D. The effect of air velocity on broiler performance and feed and water consumption. Poult. Sci. 2000, 79, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Yavah, S.; Straschnow, A.; Vax, E.; Razpakovski, V.; Shinder, D. Air velocity alters broiler performance under harsh environmental conditions. Poult. Sci. 2001, 80, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, T.; Xin, H.; Gates, R.S. A research facility for studying poultry responses to heat stress and its relief. Appl. Eng. Agric. 2002, 18, 255–260. [Google Scholar] [CrossRef]
- Simmons, J.D.; Lott, B.D.; Miles, D.M. The effects of high-air velocity on broiler performance. Poult. Sci. 2003, 82, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Yavah, S.; Straschnow, A.; Luger, D.; Shinder, D.; Tanny, J.; Cohen, S. Ventilation, sensible heat loss, broiler energy and water balance under harsh environmental conditions. Poult. Sci. 2004, 83, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Bartzanas, T.; Kittas, C.; Sapounas, A.A.; Nikita-Martzopoulou, C. Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models. Biosyst. Eng. 2007, 97, 229–239. [Google Scholar] [CrossRef]
- Mistriotis, A.; de Jong, T.; Wagemans, M.J.M.; Bot, G.P.A. Computational fluid dynamics as a tool for the analysis of ventilation and indoor microclimate in agriculture buildings. Neth. J. Agr. Sci. 1997, 45, 81–96. [Google Scholar]
- Norton, T.; Sun, D.; Grant, J.; Fallon, R.; Dodd, V. Applications of computational fluid dynamics (CFD) in the modeling and design of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 2007, 98, 2386–2414. [Google Scholar] [CrossRef]
- Norton, T.; Grant, J.; Fallon, R.; Sun, D.-W. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosyst. Eng. 2009, 103, 78–99. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Guijarro, E.; Balasch, S.; Torres, A.G. Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosyst. Eng. 2008, 100, 105–116. [Google Scholar] [CrossRef]
- Lee, I.B.; Sase, S.; Sung, S.H. Evaluation of CFD accuracy for the ventilation study of a naturally ventilated broiler house. Jpn. Agric. Res. Q. 2007, 41, 53–64. [Google Scholar] [CrossRef]
- Pawar, S.R.; Cimbala, J.M.; Wheeler, E.F.; Lindberg, D.V. Analysis of poultry house ventilation using computational fluid dynamics. Trans. ASABE 2007, 50, 1373–1382. [Google Scholar] [CrossRef]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Progr. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Fluent User’s Guide, version 6.0; Fluent Inc.: Lebanon, NH, USA, 2001.
- Wheeler, E.F.; Zajaczkowski, J.L.; Saheb, N.C. Field evaluation of temperature and velocity uniformity in tunnel and conventional ventilation broiler houses. Appl. Eng. Agric. 2003, 19, 367–377. [Google Scholar]
- Gambit User’s Guide, version 2.0; Fluent Inc.: Lebanon, NH, USA, 2001.
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: Washington, WA, USA, 1980. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Method. Appl. M. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Calvet, S.; Cambra-López, M.; Blanes-Vidal, V.; Estellés, F.; Torres, A.G. Ventilation rates in mechanically ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosyst. Eng. 2010, 106, 423–432. [Google Scholar] [CrossRef]
- Testo Inc. Homepage. Available online: http://www.testo.com (accessed on 19 March 2013).
- Bjerg, B.; Svidt, K.; Zhang, G.; Morsing, S.; Johnsen, J.O. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Comput. Electron. Agr. 2002, 34, 223–235. [Google Scholar] [CrossRef]
- Davidson, L. Ventilation by displacement in a three-dimensional room: A numerical study. Build. Environ. 1989, 24, 363–372. [Google Scholar] [CrossRef]
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). ASHRAE Fundamentals Handbook; American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc.: Atlanta, GA, USA, 2001. [Google Scholar]
- SAS User’s Guide: Statistics, version 6.12; SAS Institute Inc.: Cary, NC, USA, 1998.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).